SHRI RAMSWAROOP MEMORIAL UNIVERSITY

End Semester Examination (2021-22)-Odd Semester

B.Sc. (Hons.) Physics/Chemistry/Maths - I Year (I Sem)

Course Name: Modern Algebra	Code: BMA1004
Time: 02 Hours	Max Marks: 60

University Roll No.											
					(To	be fi	lled	by t	he S	Stude	ent)

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

	tion A: Very Short Answer Type Questions	BL	CLO	Marks (10)
1.	Define Equivalence class with example.	BL1	CLO1	02
2.	If $f: R \to R$ defined by $f(x) = 2x - 1$ then find $f^{-1}(x)$ and $f^{-1}(35)$.	BL2	CLO1	02
3.	Find the property of the permutation is even or odd. $f = \begin{pmatrix} 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 5 \end{pmatrix}$	BL3	CLO3	02
4.	Define Skew-Hermitian matrix and if A is Skew-Hermitian matrix then show that (iA) is a Hermitian matrix.	BL1	CLO2	02
5.	Write Gregory's Series when θ is an angle which lies between $-\frac{\pi}{4}$ to $\frac{\pi}{4}$.	BL1	CLO4	02
Sect	ion B: Short Answer Type Questions	BL	CLO	Marks
Atte	mpt any 03 out of 06 questions.			(30)
1.	Let N be the set of natural numbers and let R be a relation on N defined by	BL4	CLO1	10
	$(a,b)R(c,d) \Leftrightarrow a+d=b+c$			
	Show that R is an equivalence relation.			

2.	Find rank of matrix	BL5	CLO2	10
	$A = \begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \end{bmatrix}$			
3.	Define cyclic group. Show that U_{10} is cyclic group and find its all	BL1,	CLO3	10
	generator.	BL3		
4.	State and Prove Lagrange's theorem.	BL1,	CLO3	10
		BL3		
5.	Show that the characteristic roots of a unitary matrix are of unit modulus.	BL5	CLO2	10
6.	Find the roots of the equation $x^3 - 18x - 35 = 0$, by using Cardon's Method.	BL4	CLO4	10
Sect	ion C: Long Answer Type Questions/Case Study			Marks
Atte	mpt any 01 out of 04 questions.	BL	CLO	(20)
1.	Determine the value of λ and μ such that the system of equations	BL5	CLO2	20
	$x + y + z = 6; \ x + 2y + 3z = 10, \ x + 2y + \lambda z = \mu$			
	has (i) no solution (ii) Unique solution (iii) infinite solutions.			
2.	Show that the set of all positive rational numbers forms an abelian	BL3	CLO3	20
	group under the composition defined by			
	$a * b = \frac{ab}{2}$			
3.	Using Fermat's theorem, find the remainder when 8103 is divided by	BL3	CLO3	20
	13.			
4.	Using the principle of mathematical induction, prove that	BL3	CLO1	20
	$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} = \frac{a(r^{n} - 1)}{(r-1)}$ for $r > 1$ and all $n \in N$.			

Page 2	2 of 2
--------	--------
